Covid-19 y afecciones neurológicas
Palabras clave:
coronavirus, SARS-CoV-2, Covid-19, sistema nervioso central, cerebro, enfermedades neurológicas / SARS-CoV-2, central nervous system, brain, neurological diseasesResumen
Introducción: aunque se considera que el SARS-CoV es principalmente una enfermedad respiratoria, existen múltiples evidencias de que el virus puede afectar varios sistemas de órganos incluidos el sistema nervioso central. En la actualidad, ante la presencia del SARS-CoV-2 se revisan y discuten las evidencias de la capacidad neuroinvasiva de este virus y la ocurrencia de trastornos neurológicos asociados al actual coronavirus.
Desarrollo: esta revisión comenta y resume las principales experiencias reportadas sobre la presencia de afecciones del sistema nervioso central relacionadas con la COVID-19. Hace un análisis de las vías de invasión del coronavirus al sistema nervioso central, así como una descripción de la relación de la COVID-19 con las enfermedades neurológicas. Se realizó una búsqueda en las bases de datos electrónicas MEDLINE a través de PubMed y Scopus. Se acotaron las citas revisadas desde diciembre de 2019 hasta agosto de 2020.
Conclusiones: el seguimiento de los pacientes con COVID-19 debe atender la evaluación de los eventos presentados en el sistema nervioso central tanto desde el punto de vista clínico como pronóstico debido a la real presencia de diferentes manifestaciones neurológicas en los pacientes positivos al SARS-CoV-2.
Introduction: although SARS-CoV is considered to be primarily a respiratory disease, there is multiple evidence that the virus can affect various organ systems including the central nervous system. Currently, in the presence of SARS-CoV-2, the evidence of the neuroinvasive capacity of this virus and the occurrence of neurological disorders associated with the current coronavirus are reviewed and discussed.Development: this review comments and summarizes the main experiences reported on the presence of central nervous system conditions related to COVID-19. It makes an analysis of the invasion pathways of the coronavirus to the central nervous system, as well as a description of the relationship of COVID-19 with neurological diseases. A search was carried out in the electronic databases MEDLINE through PubMed and Scopus. The revised appointments were limited from December 2019 to August 2020.
Conclusions: the follow-up of patients with COVID-19 should address the evaluation of events presented in the central nervous system both from a clinical and prognostic point of view due to the actual presence of different neurological manifestations in patients positive for SARS-CoV -2.
Citas
Bibliografía
1. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. Journal of the Neurological Sciences. 2020:116832. https://doi.org/10.1016/j.jns.2020.116832
2. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of medical virology. 2020;92(6):552-5. https://doi.org/10.1002/jmv.25728
3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061-9. doi:10.1001/jama.2020.1585
4. Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. Journal of Neuroimmune Pharmacology. 2009;4(2):200-12. https://link.springer.com/article/10.1007/s11481-008-9136-0
5. Katayama Y, Hotta H, Nishimura A, Tatsuno Y, Homma M. Detection of measles virus nucleoprotein mRNA in autopsied brain tissues. Journal of General Virology. 1995;76(12):3201-4. https://doi.org/10.1099/0022-1317-76-12-3201
6. Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 1992;7(2):153-8. https://doi.org/10.1002/mds.870070210
7. Murray RS, Brown B, Brain D, Cabirac GF. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1992;31(5):525-33. https://doi.org/10.1002/ana.410310511
8. Sharma K, Tengsupakul S, Sanchez O, Phaltas R, Maertens P. Guillain–Barré syndrome with unilateral peripheral facial and bulbar palsy in a child: a case report. SAGE open medical case reports. 2019;7:2050313X19838750. https://doi.org/10.1177/2050313X19838750
9. Algahtani H, Subahi A, Shirah B. Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases and review of the literature. Case reports in neurological medicine. 2016;2016. https://doi.org/10.1155/2016/3502683
10. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020;77(6):683-90. https://jamanetwork.com/journals/jamaneurology/article-abstract/2764549
11. Wang H-Y, Li X-L, Yan Z-R, Sun X-P, Han J, Zhang B-W. Potential neurological symptoms of COVID-19. Therapeutic Advances in Neurological Disorders. 2020;13:1756286420917830. https://doi.org/10.1177/1756286420917830
12. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020;11(7):995-8. https://doi.org/10.1021/acschemneuro.0c00122
13. Baig AM, Sanders EC. Potential Neuroinvasive Pathways of SARS‐CoV‐2: Deciphering the Spectrum of Neurological Deficit Seen in Coronavirus Disease 2019 (COVID‐19). Journal of Medical Virology. 2020. https://doi.org/10.1002/jmv.26105
14. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of virology. 2008;82(15):7264-75. https://jvi.asm.org/content/82/15/7264.short
15. Wilson MP, Jack AS. Coronavirus disease (COVID-19) in neurology and neurosurgery: A scoping review of the early literature. Clinical Neurology and Neurosurgery. 2020:105866. https://doi.org/10.1016/j.clineuro.2020.105866
16. Steardo L, Steardo Jr L, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID‐19. Acta Physiologica. 2020:e13473. https://doi.org/10.1111/apha.13473
17. Sun T, Guan J. Novel coronavirus and the central nervous system. European Journal of Neurology. 2020. https://doi.org/10.1111/ene.14227
18. Matías-Guiu J, Gomez-Pinedo U, Montero-Escribano P, Gomez-Iglesias P, Porta-Etessam J, Matias-Guiu J. Should we expect neurological symptoms in the SARS-CoV-2 epidemic? Neurología (English Edition). 2020. https://doi.org/10.1016/j.nrleng.2020.03.002
19. Hosking MP, Lane TE. The pathogenesis of murine coronavirus infection of the central nervous system. Critical Reviews™ in Immunology. 2010;30(2).
20. Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clinical infectious diseases. 2005;41(8):1089-96. https://doi.org/10.1086/444461
21. Lau K-K, Yu W-C, Chu C-M, Lau S-T, Sheng B, Yuen K-Y. Possible central nervous system infection by SARS coronavirus. Emerging infectious diseases. 2004;10(2):342. doi: 10.3201/eid1002.030638
22. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. The American journal of pathology. 2007;170(4):1136-47. https://doi.org/10.2353/ajpath.2007.061088
23. Tang JW, To KF, Lo AW, Sung JJ, Ng H, Chan PK. Quantitative temporal‐spatial distribution of severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) in post‐mortem tissues. Journal of medical virology. 2007;79(9):1245-53. https://doi.org/10.1002/jmv.20873
24. Hamming I, Timens W, Bulthuis M, Lely A, Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004;203(2):631-7. https://doi.org/10.1002/path.1570
25. Boonacker E, Van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV. European journal of cell biology. 2003;82(2):53-73. https://doi.org/10.1078/0171-9335-00302
26. Tsai L-K, Hsieh S-T, Chao C-C, Chen Y-C, Lin Y-H, Chang S-C, et al. Neuromuscular disorders in severe acute respiratory syndrome. Archives of neurology. 2004;61(11):1669-73. doi:10.1001/archneur.61.11.1669
27. Chao C, Tsai L, Chiou Y, Tseng M, Hsieh S, Chang S, et al. Peripheral nerve disease in SARS:: Report of a case. Neurology. 2003;61(12):1820-1. https://doi.org/10.1212/01.WNL.0000099171.26943.D0
28. Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics. 2004;113(1):e73-e6. https://doi.org/10.1542/peds.113.1.e73
29. Hui DS, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infectious Disease Clinics. 2019;33(4):869-89. https://doi.org/10.1016/j.idc.2019.07.001
30. Desforges M, Le Coupanec A, Brison É, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Infectious Diseases and Nanomedicine I: Springer; 2014. p. 75-96. https://link.springer.com/chapter/10.1007/978-81-322-1777-0_6
31. Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Frontiers in cellular neuroscience. 2018;12:386. https://doi.org/10.3389/fncel.2018.00386
32. Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell host & microbe. 2013;13(4):379-93. https://doi.org/10.1016/j.chom.2013.03.010
33. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):14. https://doi.org/10.3390/v12010014
34. Hung EC, Chim SS, Chan PK, Tong YK, Ng EK, Chiu RW, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clinical Chemistry. 2003;49(12):2108. doi: 10.1373/clinchem.2003.025437
35. Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163-9. https://doi.org/10.1159/000453066
36. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International Journal of Infectious Diseases. 2014;29:301-6. https://doi.org/10.1016/j.ijid.2014.09.003
37. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. The Journal of infectious diseases. 2016;213(5):712-22. https://doi.org/10.1093/infdis/jiv499
38. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004;203(2):622-30. https://doi.org/10.1002/path.1560
39. Baig AM. Updates on what ACS reported: emerging evidences of COVID-19 with nervous system involvement. ACS Chemical Neuroscience. 2020;11(9):1204-5. https://doi.org/10.1021/acschemneuro.0c00181
40. Baig AM. Neurological manifestations in COVID‐19 caused by SARS‐CoV‐2. CNS neuroscience & therapeutics. 2020;26(5):499. doi: 10.1111/cns.13372
41. Baig AM. Designer’s microglia with novel delivery system in neurodegenerative diseases. Medical hypotheses. 2014;83(4):510-2. https://doi.org/10.1016/j.mehy.2014.08.003
42. Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. Journal of neurochemistry. 2016;138(1):74-85. https://doi.org/10.1111/jnc.13641
43. Daly JL, Simonetti B, Plagaro CA, Williamson MK, Shoemark DK, Simon-Gracia L, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. bioRxiv. 2020. https://doi.org/10.1101/2020.06.05.134114
44. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. 2020. https://doi.org/10.1101/2020.06.07.137802
45. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. https://doi.org/10.1016/j.cell.2020.02.052
46. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. Journal of Clinical Neuroscience. 2020. https://doi.org/10.1016/j.jocn.2020.05.017
47. Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020. https://doi.org/10.1101/2020.03.16.20035105
48. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. New England Journal of Medicine. 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2008597
49. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020:201187. https://doi.org/10.1148/radiol.2020201187
50. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
51. quan Li L, Huang T, qing Wang Y, ping Wang Z, Liang Y, bi Huang T, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. Journal of Medical Virology. 2020;92(6). https://doi.org/10.1002/jmv.25757
52. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020;368. https://doi.org/10.1136/bmj.m1091
53. Sharifi-Razavi A, Karimi N, Zarvani A, Cheraghmakani H, Baghbanian SM. Ischemic stroke associated with novel coronavirus 2019: a report of three cases. International Journal of Neuroscience. 2020:1-5. https://doi.org/10.1080/00207454.2020.1782902
54. Vollono C, Rollo E, Romozzi M, Frisullo G, Servidei S, Borghetti A, et al. Focal status epilepticus as unique clinical feature of COVID-19: A case report. Seizure. 2020. https://doi.org/10.1016/j.seizure.2020.04.009
55. Sohal S, Mossammat M. COVID-19 Presenting with Seizures. IDCases. 2020:e00782. https://doi.org/10.1016/j.idcr.2020.e00782
56. Xiang P, Xu X, Gao L, Wang H, Xiong H, Li R. First case of 2019 novel coronavirus disease with encephalitis. ChinaXiv. 2020;202003:00015.
57. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020. https://doi.org/10.1016/j.ijid.2020.03.062
58. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus. 2020;12(3). doi: 10.7759/cureus.7352
59. Xinhua. Beijing hospital confirms nervous system infections by novel coronavirus. 2020.
60. Huang YH, Jiang D, Huang JT. A Case of COVID-19 Encephalitis. Brain, Behavior, and Immunity. 2020. doi: 10.1016/j.bbi.2020.05.012
61. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? The Lancet Neurology. 2020;19(5):383-4. https://doi.org/10.1016/S1474-4422(20)30109-5
62. Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. Journal of Clinical Neuroscience. 2020. https://doi.org/10.1016/j.jocn.2020.04.062
63. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine. 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2009191
64. Virani A, Rabold E, Hanson T, Haag A, Elrufay R, Cheema T, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection. IDCases. 2020:e00771. https://doi.org/10.1016/j.idcr.2020.e00771
65. Coen M, Jeanson G, Almeida LAC, Hübers A, Stierlin F, Najjar I, et al. Guillain-Barré syndrome as a complication of SARS-CoV-2 infection. Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.04.074
66. Camdessanche J-P, Morel J, Pozzetto B, Paul S, Tholance Y, Botelho-Nevers E. COVID-19 may induce Guillain-Barré syndrome. Revue neurologique. 2020. doi: 10.1016/j.neurol.2020.04.003
67. Padroni M, Mastrangelo V, Asioli GM, Pavolucci L, Abu-Rumeileh S, Piscaglia MG, et al. Guillain-Barré syndrome following COVID-19: new infection, old complication? Journal of neurology. 2020:1. https://doi.org/10.1007/s00415-020-09849-6
68. Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurology-Neuroimmunology Neuroinflammation. 2020;7(4). https://doi.org/10.1212/NXI.0000000000000741
69. Kim J-E, Heo J-H, Kim H-o, Song S-h, Park S-S, Park T-H, et al. Neurological complications during treatment of middle east respiratory syndrome. Journal of Clinical Neurology. 2017;13(3):227-33. doi: 10.3988/jcn.2017.13.3.227
70. Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiology of disease. 2018;109:226-48. https://doi.org/10.1016/j.nbd.2016.12.013
71. Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? Progress in molecular biology and translational science. 168: Elsevier; 2019. p. 299-322. https://doi.org/10.1016/bs.pmbts.2019.06.002
72. Papa SM, Brundin P, Fung VS, Kang UJ, Burn DJ, Colosimo C, et al. Impact of the COVID-19 pandemic on Parkinson’s disease and movement disorders. Mov Disord. 2020;6. DOI: 10.1002/mds.28067
73. Abdennour L, Zeghal C, Dème M, Puybasset L, editors. Interaction cerveau-poumon. Annales francaises d'anesthesie et de reanimation; 2012: Elsevier. https://doi.org/10.1016/j.annfar.2012.04.013
74. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clinical Neurology and Neurosurgery. 2020;194:105921. https://doi.org/10.1016/j.clineuro.2020.105921
75. Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, et al. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: A retrospective multicenter study. Epilepsia. 2020. https://doi.org/10.1111/epi.16524
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La aceptación de un trabajo para su publicación en Panorama. Cuba y Salud supone que Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada, siempre que se indique la publicación inicial en esta revista.
Licencia Creative Commons
La Revista Panorama Cuba y Salud se encuentra bajo una
Licencia Creative Commons Reconocimiento-NoComercial 4.0